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1. Model language as a human process
2. Use language to better understand humans.
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Human-Centered NLP — We will cover:

1. Differential Language Analysis
2. Human Factor Adaptation
3. Human Language Modeling



Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute
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Bayesian term for “smoothing”: accounts for uncertainty as a
function of event frequency (i.e. words observed less) by

integrating “prior” beliefs mathematically.
“Informative”: the prior is based on past evidence. Here, the
total frequency of the word.
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Natural language is generated by people.

“The common misconception is that language has
got to do with words and what they mean. It does
not. It has to do with people and what they mean.”

Channon, Mocteller & Clark & Mairesse, Walker, Hovg & Sooganrd,
1948 Walloce 1963 Sehober, 1992 et al., 2007 2015
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Approaches to Human Factor Inclusion

1. _Bias Mitigation: Oplis 50 as not to pick up on

What are human “factors”?
\C.Y. 1ays CapuUUIICH 1auCl PICIUICS Ut TG 11N kitchen as Women)

2. oAdditive: Include direct effect of human factor on outcome.
J(e.g. age and distinguishing PTSD from Depression)

3. Adaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)



Human Factors

--- Any attribute, represented as a continuous or discrete variable, of the humans
generating the natural language.

E.g.
e Gender
e Age
e Personality
e Ethnicity
e Socio-economic status



Human Factors

typically requires putting people into discrete bins



“most latent variables of interest to psychiatrists and personality

and clinical psychologists are dimensional [continuous]”
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Adaptation Approach: Domain Adaptation

Features for: solurce targllet newX = []

O (z) = (z,2,0), ' (x)=(z,0,z) for all x in source_x:

newX.append(x + x + [@0]*1len(x))
for all x in target_x
newX.append(x + [@]*1len(x), X)

newY = source_y + target y

model = model.train(newX,newY)
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Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
Continuous
_>

Adaptation

(Lynn et al., 2017)
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Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
Continuous
_>

Adaptation

Gender Score Features Original Gender Copy
-2 X > X compose(-.2, X)

(Lynn et al., 2017)




User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(Xa ’U,) — <X, C(fu,l)x)7 C(fu,27x)7 e 7C(fu,d7X)>

(Lynn et al., 2017)



User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(Xa ’U,) — <X, C(fu,l’x)a C(fu,27x)7 e 7C(fu,d7 X)>

User  Factor Augmented Instance

Classes d(x,u)
User 1 F (x,%,0,0,---,0)
User 2 Fy (x,0,%x,0,---,0)
User3 Fy, Fj (x,%,0,%, -, 0)
User 4 Ey, (x,0,0,---, 0, x)

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With k£ domains the
augmented feature vector is of length n(k + 1).

(Lynn et al., 2017)



User Factor Adaptation: Handling multiple factors

Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(X? u) = <X? C(fU,17 X)a C(fu,Qa X)a T 7C(fu,d7 X)>

User  Factor Augmented Instance

Classes O (x,u)
User 1 Fi (x,%,0,0,---,0)
User 2 Iy (x,0,%,0,---,0)
g User3 I, F3 (x,%,0,%, -, 0)
/mw'::m_ ”ml::mw User 4 Fk <X, O, 0,- iy 0, X>

Table 1: Discrete Factor Adaptation: Augmen-
tations of an original instance vector x under dif-
ferent factor class mappings. With £ domains the
augmented feature vector is of length n(k + 1).

(Lynn et al., 2017)



Main Results

Adaptation improves over unadapted baselines (Lynn et al., 2017)

Latent
(\[e] (User

Task Metric | Adaptation Gender Personality Embed)
Stance F1 64.9| 65.1(+0.2) 66.3(+1.4) 67.9(+3.0)
Sarcasm | F1 739| 751 (+1.2) 75.6(+1.7) 77.3(+3.4)
Sentiment | Acc. 60.6 61.0 (+0.4) 61.2 (+0.6) 60.7 (+0.1)
PP-Attach | Acc. 71.0 70.7 (-0.3) 70.2 (-0.8) 70.8 (-0.2)
HON Acc. 91.7] 91.9(+0.2) 91.2 (-0.5) 90.9 (-0.8)




Example: How Adaptation Helps
Vrr\wlgfmeeandjectivesHsa rcasm

Men
more adjectives—no sarcasm
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more “male” more “female”



Problem

User factors are not always available.



Solution: User Factor Inference

past tweets
Niranjan @b_niranjan - Sep 2 v .
There must be a word for trending #hashtags that you know you will regret if you > I nfe rre d fa Cto rs
click. s there?
i s Known
iranjan @b_niranjan - Aug 31 v
Passwords spiral: Forget password for the acnt you use twice a year. Ask for Ag e (S ap et al. 2014 )
reset';I .Can.‘t us(; Erewoug Crtja\lte3 a; new one to forget later. Gender ( S3 D et al. 201 4)
iranjan @b_niranjan - Ju v i
Thrilled to hear @acl2017's diversity efforts as the first thing in the conference. Pe rsona I |ty ( Pa rk et d I . 2 O 1 5 )
0 0 01 B8 Latent
User Embeddings
(Kulkarni et al. 2017)
Word2Vec

TF-IDF



Backeround Size

Using more background tweets to infer factors produces larger gains

personality (cont) user embed (cont)

ine (f1)
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Full User Factors Adaptation Pipeline: with latent factors from training

doc-id user-id document d=128

m —> embdngs
m —> embdngs
—> embdngs
m —> embdngs
—> embdngs
—> embdngs

total documents



Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

doc-id user-id document _
d=128 B - -
|42 [l text..  gug embdngs |

0 O
0
B

text... gy embdngs
3 -

. ) i
total documents
Step 1: Create User Factors user x factors
d=3

fi, f2, other lower dimension)
16 f1, f2, f3
f1, 2, f3




Full User Factors Adaptation Pipeline: with latent factors from training

: users x avg_embeddings
user-id document

d =128 N - -
-

doc-id

1

B3
3
4
5
6

user-adapted l) eddings

emb x f1; emb « i7; emb x f3 user x factors

d=3
f1, f2, 3 (or other lower dimension)

emb x f1; emb x f2; emb x f3 gy

f1, f2, f3

n emb xfl; emb < 2; emb x f3 gy




Full User Factors Adaptation Pipeline: with latent factors from training

/

Step 3: Train Model _ _
doc-id rating

user-adapted ‘l r

emb x f1; emb < (7; emb x f3

emb x f1; emb < (2; emb x f3

emb x f1; emb x f2; emb x f3

emb x f1; emb x f2; emb x f3



Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

2 B2 <o

' This was training data; l
now assume test

doc-id user-id document

N users
What about when predicting on

new documents?
total documents

user-adapted l) eddings

emb x f1; emb « i7; emb x f3 user x factors

f1, f2, 3 o; ther lower dimension)

emb xfl; emb < 2; emb x f3 gy
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Full User Factors Adaptation Pipeline: with latent factors from training

users x avg_embeddings

[ I A.Savethe
transformation (V)
2 2| embdngs from PCA during

(| This was training data; myi embdngs training
now assume test l

doc-id user-id document

embdngs B. Apply V to user
x avg_embeddings

matrix during

N users test/trial.
What about when predicting on

new documents?
(easyasA., B., C))

total documents

Transformati

user-adapted £ fil on Matrix (V)

emb x f1; emb « (7; emb x f3 user x factors

f1, f2, f3
f1, f2, f3
e s MG et socument B B 225

features by user
factors just like in

emb x f1; emb « i2; emb x f3 g

ther lower dimension)
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o
=au= :
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training.



Approaches to Human Factor Inclusion

1. _Bias Mitigation: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)

2. oAdditive: Include direct effect of human factor on outcome.
J(e.g. age and distinguishing PTSD from Depression)

3. Adaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)



Approaches to Human Factor Inclusion

1. _Bias Mitigation: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)

2. oAdditive: Include direct effect of human factor on outcome.
J(e.g. age and distinguishing PTSD from Depression)

3.gAdaptive: Allow meaning if language to change depending

on human context. (also called “compositional”)
(e.g. “sick” said from a young individual versus old individual)



Human-Centered NLP — We will cover:

1. Differential Language Analysis
2. Human Factor Adaptation
3. Human Language Modeling
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Language Modeling

probability of a token sequence

Pr(W) = [ | Pr(wilwy.i-1)
1=1

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).



Language Modeling

| spend my L
weekends hiking.

| love the serenity of L
the mountains.

| take trips to get out of
Long Island to hike!

Hiking is the best




Language Modeling: What's Missing?

| spend my
 weekends hiking.

" | love the serenity of
' the mountains.

| take trips to get out of
Long Island to hike!

 Hiking is the best.

1. Addressing Ecological Fallacy: Treating dependent phenomena as if
independent. (Piantadosi et al., 1988; Steel and Holt, 1996)
2. Modeling the higher order structure.




Language Modeling

probability of a token sequence

Pr(W) = [ | Pr(wilwy.i-1)
1=1

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).



Human Language Modeling (HuLM)

LM - probability of a token sequence

Pr(W) = H Pr(wilwy.;_1)

H § LM - probability of a token sequence,
in the context of the human that generated it.

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).



Human Language Modeling (HuLM)

LM - probability of a token sequence
n
PT(W) — HPT<wi|w1:i—1)
1=1

n

Pr(W|UStatic) — H Pr(wz‘|w1:z‘—1, Ustatic)

1=1

HuLM

- probability of a token sequence, in the context of the human that generated it.

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).
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Human Language Modeling (HuLM)

LM - probability of a token sequence

PT(W) — HPr(wi|w1:i_1)
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\/
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1=1
- probability of a token sequence, in the context of the human that generated it.

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).



Human Language Modeling (HuLM)

LM - probability of a token sequence

PT(W) — HP?‘(’U}Z'|’UJ1;Z'_1)

PT(W’Ustam‘c) = H Pr(wi’wlzi—ly Ustatic)

I i=1 ctatic vser reprecentation
n
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i=1 ‘ucer ctate” reprecentation

- probability of a token sequence, in the context of the human that generated it.

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling.
In Findings of the Association for Computational Linguistics: ACL 2022 (pp. 622-636).



User State Representation, U

n

Pr(Wi|U;-1) = HP"“(wt,z'|wt,1:i—1,U1:t—1)
i=1

NnNo history % a” data

Ul:t—l =J Uyt—1 = W1.1:n1y W2, 1:ngy s Wt—1,1:n4_1

(reduces to a standard LM: Pr(w;|w;.;_1)) (all previous docs and tokens by the person)

- doesu't capture the percon - huge

- wno generalizations

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).
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Pr(Wi|U;-1) = HP"“(wt,z'|wt,1:i—1,U1:t—1)
i=1

NnNo history ﬁ a” data

Ul:t—l =J Uyt—1 = W1.1:n1y W2, 1:ngy s Wt—1,1:n4_1

(reduces to a standard LM: Pr(w;|w;.;_1)) (all previous docs and tokens by the person)

- doesu't capture the percon history of - huge

user states - no generalizations

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).



User State Representation, U

n
PT(Wt|Ut—1) — HP"“(’wt,z'|wt,1:7;—1,U1:t—1)
i=1
State and Trait Theory from Psychology: Traits — the stable
characteristics of "who someone is" — define a distribution of potential
states of being that moderate human behavior (i.e. language).

| love the serenity

of the mountains. w
So excited about

my model results! w

history of

| take trips to get

out of Long Island user states
to hike! w

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).



User State Representation, U

n
PT(Wt|Ut—1) — HP"“(’wt,z'|wt,1:i—1,U1:t—1)
i=1
State and Trait Theory from Psychology: Traits — the stable
characteristics of "who someone is" — define a distribution of potential
states of being that moderate human behavior (i.e. language).

| love the serenity Ui.t—1=[a sequence of states]
of the mountains. w oy
Happy Tender
So excited about
my model results! w /I\-awmﬁ\m-wu— o B
Fliad D €3 Pt M— —
| take trips to get \l/ \l/ \l/
Angry Sad Scared

out of Long Island
to hike! w

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).

(Washington Outsider, 2014)



User State Representation, U

n

Pr(Wi|U;-1) = HPr(wt,i|wt,1:i—1aU1:t—1)
i=1

Hiking is the _?
| love the serenity Pr w, = "best” I love playing Super
m g e - - - [
Pr(w B worst"|

So excited about Hating the traffic! Get
my model results! w m - me out of here,

please!

| take trips to get
out of Long Island | love getting into the

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).



User State Representation: Motivation

e Addressing Ecological Fallacy: Treating dependent phenomena (i.e.
sequences from the same person) as if independent. naosieta, 158s; steet ana o, 19569

e Modeling the higher order structure.
e Building on ideas from human factor inclusion/adaptation et 207 menge
2019; Hovy & Yang, 2021) and personalized mOdeIing- (King & Cook, 2020; Jaech & Ostendorf, 2018)

| love the serenity Ui.:—1 = [a sequence of states]
of the mountains. '

Happy Tender Excited
So excited about /I\ A\
| U frtoted B2 € Raging Diven 2 3 Heutbvoben Tam B € Temiied
my model results! j+1
Flilled £ €3 Pased e £ G2 St s B & Ady
| take trips to get \l/ \l/ \l/
U. o Sad Scared

out of Long Island
to hike!

(Washington Outsider, 2014)

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).



Human Language Modeling (HuLM)

e Addressing Ecological Fallacy: Treating dependent phenomena (i.e.
sequences from the same person) as if independent. naosieta, 158s; steet ana o, 19569

e Modeling the higher order structure.
e Building on ideas from human factor inclusion/adaptation wmets. 2017 meng s pau,
2019; Hovy & Yang, 2021) and personalized mOdeIing- (King & Cook, 2020; Jaech & Ostendorf, 2018)

| love the serenity Ui.:_1=[a sequence of states]
of the mountains. '

n
So excited about
my model results! L Pr(Wi|Us-a) /= HPr(wt,ilwt,l:i—laUlzt—l)

1=1

| take trips to get
out of Long Island
to hike!

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).



Human Language Modeling (HuLM)

Goal: Language modeling as a task grounded in the
"natural” generators of language, people.

The HuLM task definition: Estimate the probability of a sequence of tokens, w,_ ,
conditioned on a higher-order representation, U,, constituting the human state of being

just before the sequence generation.

| love the serenity Ui.:_1=[a sequence of states]

of the mountains.

n

So excited about U PT(Wt|Ut—1) - H PT(wt,z‘|’wt,1:z’—1a Ul:t—l)
1=1

my model results! j+1

| take trips to get
out of Long Island
to hike!

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H. (2022, May). Human Language Modeling. In Findings of the Association for Computational
Linguistics: ACL 2022 (pp. 622-636).




How to Adapt the Transformer?

AEEREEE NN

Layer &
Layer k-1
Layer k-2

Transformer

Network

Layer 3
Layer 2
Layer 1

PrEtttrt ottt
Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H.

[ . . . . . . . . . . ] (2022, May). Human Language Modeling.

In Findings of the Association for Computational Linguistics:

ACL 2022 (pp. 622-636).

Input: A Block of Temporally Ordered User Messages
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7
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How to Adapt the Transformer?

Pttt bttt

Layer &

: Layer k-1
Previous User State
Transformer
How to pacs along the Network

ucer ctate?

Extract
Layer

Current User State

Layer 3
Recurrent connection

Layer 2

From previous mescage.
Layer 1
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How to Adapt the Transformer?

Pttt bttt

Extract
.......... : Layer k-1 Layer
Previous User State Current User State
T
Transformer

How to pacs along the Network How to fet the model adapt

cemantics to the ctafe!

Layer 2

(3 T O A O PR BN N
Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H.

{ . . . . . . . . . . ] (2022, May). Human Language Modeling.

In Findings of the Association for Computational Linguistics:

ucer ctate?
Recurrent connection

From previous mescage.

ACL 2022 (pp. 622-636).
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How to Adapt the Transformer?

Pttt bttt

Extract
.......... : Layer k-1 Layer
Previous User State Current User State
T
Transformer

Network How to let the model adapt?

User State Based Query
Insert

Layer 2 ...........

Insert
Layer

(T N N O N PP IS B

Soni, N., Matero, M., Balasubramanian, N., & Schwartz, H.

{ . . . . . . . . . . ] (2022, May). Human Language Modeling.
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Human-aware Recurrent Transformer (HaRT)

Pttt bttt

Extract
.......... : Layer k-1 Layer
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Transformer
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In Findings of the Association for Computational Linguistics:
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Human Language Modeling

Evaluation: Human Language Modeling HaRT: Effect of History Size

125 29 2851

100 \
= 15 28
3 z
S 50 5 \
* 5 26.80

25 vo27 i
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Human Language Modeling

Evaluation: Human Language Modeling HaRT: Effect of History Size
125 29 28.51
100 \
= 15 28
3 z
e 50 8
* B \26 80
o nNa 11
Dev Test Document-Level Task: Stance Detection
B GPT-2frozen B GPT-2HLC W HaRT 75
70
L 65
Dataset: Human Language Corpus ( £
@ 60
Soni, N., Matero, M., s
Balasubramanian, N., & 4]
Schwartz, H. (2022, May).
Human Language Modeling. In ‘a 50

Findings of the Association for
Computational Linguistics: ACL %
2022 (pp. 622-636).

¥ Lynn et al. (2019) B MeLT B GPT-2HLC
B BERTweet B HaRT




pearson r

Weighted F1

User-Level Task: Age Estimation User-Level Task: Openness Assessment

0.9 0.8
0.8 E 06
0.7 g
E 04
0.6 E
0.5 |
0.4 0.0
B V Ganesan et al. (2021) B Sap et al. (2014) B V Ganesan et al. (2021) ® GPT-2HLC
B GPT-2HLC W HaRT B Lynn et al. (2020) W HaRT
Document-Level Task: Stance Detection Document-Level Task: Sentiment Analysis
75 80
. 70
65 %
e 60
60 =
99 20 Sentiment
50 Model
¥ Lynn et al. (2019) B MeLT W GPT-2HLC ¥ Lynnetal. (2019) B MeLT W GPT-2HLC

B BERTweet B HaRT B BERTweet B HaRT



HuLM/HaRT Takeaways

e HulLM: Extension of language modeling
with notion of user.

e HaRT: First step toward
large human language models.

e Progress for large LMs grounded in
language’s “natural” generators, people.

Previous User
State

i Extract
Layer

Layer 11 tanh(Ir, U, + W, ")

i I spend my
| weekends hiking.

| love the serenity of
he mountains.

| take trips to get out
| of Long Island to hike!

Hiking is the best.

User State Recurrence

Transformer

User-State Based
Self-Attention

Layer2

Temporally ordered

Input User Messages

Human Language Modeling

Nikita Soni, Matthew Matere
iranjan Balasubramanian, and H. Andrew Schwartz
Department of Computer Science, Stony Brook University
niranjan, has) b

Abstract

Natural language is generated by people
traditional language modeling views wor
or documents as if generated independently
Here, we propose human language modeling
(HULM), a hierarchical extension to the I
guage modeling problem whereby a human-
Tevel exists to connect sequences of documents
g. social media messages) and capture the
notion that human language is moderated by
anging human states. We introduc

task, pre-trained on approximately 100,000 s0-
cial media users, and demonstrate it's effec-

ness in terms of both language modeling
(perplexity) for social media and fine-tuning
for 4 downstream tasks spanning document-
and user-levels: stance detection, sentiment
classification, age estimation, and personality
assessment. Results on all tasks meet or sur-
pass the current state-of-the-art

To address this, we introduce the task of human
language modeling (HULM), which induces de-
pendence among text sequences via the notion of
a human state ' the text was generated. In
particular, we formulate HULM as the task of es-
timating the probability of a sequence of to

(Upg-1) derived from the tokens of other docu-
ments written by the same individual. Its key ob-
jective is:
Pr(welwe -1, Uree1)
where # indexes a particular sequence of tempo-
rally ordered utterances (e.g. a document or so-
al media post), and U, represents the human
ate just before the current sequence, £. In one ex-
treme, Uye—y could model all previous tokens in
all previous documents by the person. In the oppo-
site extreme, Uy-1 can be the same for all users
and for values of £ reducing to standard language

Ul



https://github.com/humanlab/HaRT

Human-Centered NLP — Review:

1. Differential Language Analysis
2. Human Factor Adaptation

3. Human Language Modeling



Supplement: On the multi-level nature of
words:
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Dato. are inherently multi-level.

Message User County
Distribution

1-gram [topic |Lex. |1-gramtopic Lex. |1-gram |topic |Lex.

Power Law | 71

Log-Normal _ ] : 97 | .64 92 .86
Normal

Proportion best fit by the given distribution.

Almodaresi, F., Ungar, L., Kulkarni, V., Zakeri M., Giorgi, S. & Schwartz, H. A.
(2017). On the Distribution of Lexical Features in Social Media. Annual
Meeting of the Association for Computational Linguistics



LORA: Fine-tuning LMs with Low Rank Approximation

e LoRA is amemory efficient form of training LLMs
without significant loss in performance

e LoRA performs gradient updates for only 4M out of 7B
parameters to improve Llama2’s social understanding




LORA: Fine-tuning LMs with Low Rank Approximation

For each downstream task, we learn a different set of parameters A¢

* [Ad] = ol
* GPT-3 hasa | ¢, | of 175 billion
* Expensive and challenging for storing and deploying many independent instances

Key idea: encode the task-specific parameter increment A¢p = A¢(®) by a smaller-
sized set of parameters 0, |0| < | ¢, |

The task of finding A¢ becomes optimizing over ©

8
™ 2 Zt_llog(P b, +00(©) Vel X Y<t))

xy)



LORA: Fine-tuning LMs with Low Rank Approximation
Low-rank-parameterized update matrices

Updates to the weights have a low “intrinsic
rank” during adaptation (Aghajanyan et al. 2020)

¢ W, € R¥k: 3 pretrained weight matrix

Pretrained Update
Weights Weights

« Constrain its update with a low-rank
decomposition:

where B € R¥*", 4 € R™k r « min(d, k)

W e Rxd NS

* Only A and B contain trainable parameters



LORA: Fine-tuning LMs with Low Rank Approximation

Low-rank-parameterized update matrices

* Asone increase the number of trainable
parameters, training LORA converges to training
the original model

Pretrained
Weights

* No additional inference latency: when switching
to a different task, recover W, by subtracting BA
and adding a different B'A’

» Often LoRA is applied to the weight matrices in

the self-attention module — ]
just query an _
e



https://iclr.cc/virtual/2022/poster/6319

